Optimization of the Aluminum Riveting Process Using an Experimental Design Technique

Somchai Muankhoksoong^{1*} and Asst. Prof. Dr. Santichai Chewasuthisil² Industrial Engineering Department, Faculty of Engineering, Chiang Mai University Suthep Sub-district, Mueang District, Chiang Mai Province 50200 *Corresponding Author : <u>s4826123@hotmail.com</u>

Abstract

The purpose of this research is to determine the optimal factors existing in the aluminum riveting process. First, a 2⁵ full-factorial design was used to screen five factors and two levels by selecting a lapping-joint method using only one rivet which exhibited significant riveting shear. The five riveting parameters used were press force 5,000 and 8,000 newtons, a thickness of material of 2.5 and 4mm, a size of hole of 4.7 and 5.2 mm, over long rivets of 4.7 and 5.2 mm and press times of 5 and 15 seconds. There were three parameter levels: thickness of the metal (2.5, 3.2 and 4.0 mm), size of the hole (2.5, 3.2 and 4.0 mm) and size of the over-long rivet (4.5, 5.6 and 6.7mm), then a Box-Behnken design was used in order to analyze the data and find the optimization point. The experiment found that a standard rivet has a shear strength resistance of 1,113.30 newtons. The study methodology was to prepare the riveting specimens use by selecting a lapping joint per one rivet to test the mechanical quality and shear. The results of the experiment show that the optimal conditions (to a statistically significant degree) were to use a 5.2 mm hole, a 2.8 mm level of thickness and a 6.3 mm over-long rivet. The optimal point for the shear test was 1,417.55 newtons, and an over-shear strength of 303 newtons could be increased by 27.32 percent.

Key words: Optimization, Aluminum Riveting, Experiment

1. Introduction

Joining workpieces together so as to increase length or to create another form can be carried out in two ways; using melted materials and non-melted materials, depending upon the purpose. Welding is a process that joins materials through melting the same type of metal. The principle is to melt the workpieces where heat will cause a change in their internal structure. However, some metals cannot be used in the welding process, and as a result, riveting plays an important role as a substitute for welding, whilst maintaining the required strength of the metal. Riveting can be done in two ways, using heated rivets, such as in the fabrication of a large structure, or cooled rivets, such as in the fabrication of non-steel metal structures and spacecraft structures, so as to create flexibility in the structure and to maintain the internal structure in its original form.

The riveting process can be used for different types of metals, for example aluminum and copper sheeting. The workpieces construction of some requires riveting, in order to maintain the mechanical properties and the form, under a design principle. Each type of metal rivet has different mechanical properties. If using the same size of drilled holes and with the rivet size remaining the same, the rivet's tensile strength, the pressing time on the length of the rivet body and the different size and type of materials will vary the strength of the work. The results of the research provide a relationship between variables and an appropriate set of conditions that influence the maximum shear resistance of aluminum rivets.

2. Research Methodology

1. The material used in the experiment was St 37 hot-rolled carbon steel, including: Flat steel bar 2.5x25x80 millimeters Flat steel bar 4.0x25x80 millimeters Flat steel bar 2.5x25x80 millimeters Flat Steel bar 4.0x25x80 millimeters With a chemical composition as follows:

С	Mn	Р	S	
0.17	-	0.040	0.040	

Table 1: Chemical Composition of Carbon Steel

2. The rivets used in the tension test were aluminum rivets with a size of \emptyset 4.5 mm. as shown in the picture.

Fig. 1 Aluminum Rivets

3. The drilling sets for the punching work were as follows:

- Drilling set size Ø4.7 mm.
- Drilling set size Ø5.2 mm.

Fig. 2 Drilling Sets

2.1 Steps in Workpiece Preparation

1) Cut St 37 carbon steel with a 2.5 and 4 mm. thickness into pieces 80 mm. in length and 25 mm. wide

2) Drill the workpieces to Ø4.7 and Ø5.2 mm.

3) Fasten the workpieces by riveting.

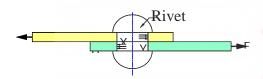


Fig. 3 Riveting the Test Workpieces

Fig. 4 Tested Workpieces

2.2 Shear Resistance Test

1) Hold the riveted workpieces at both ends using a tension testing tool

2) Pull the tested workpieces from both ends until the parts detach

3) Record the shear resistance.

3. Experiment Results 3.1 Screening Experiment

As there were five main parameters used in the preliminary study, a screening experiment was required. The obtained factors were then used for further in-depth study, using the 2⁵ factorial design methods (Full Factorial Design). Each factor was comprised of two levels and two replicates, and was conducted across 160 experiments. The experiment design and the results are shown in Table 3. The experiments were organized in an orderly pattern so as to minimize the possible errors caused by uncontrolled factors.

Table 2: Factors, Parameter Levels, andSymbols used in the Study

Factor/Unit	Le	vel	Sumhala
Factor/Unit	Low(-1)	High(+1)	Symbols
1. Press Force (Newton)	5000	8000	А
2. Size of Hole (m.m.)	4.7	5.2	В
3. Thickness (m.m.)	2.5	4.0	С
4. Rivet Long (m.m.)	4.5	6.7	D
5. Press Time (sec.)	5.0	15.0	E

 Table 3: Experiment Patterns and Results

Std						She	Shear Strength (N/mm ²)				
Order	Α	в	с	D	E	1	2	3	4	5	Аро
1	5000	4.7	2.5	4.5	5	1160	1110	1210	1200	1120	1160
2	8000	4.7	2.5	4.5	5	1120	1220	1120	1210	1130	1281
3	5000	5.2	2.5	4.5	5	1400	1390	1360	1420	1440	1407
4	8000	5.2	2.5	4.5	5	1370	1410	1430	1390	1460	1318
5	5000	4.7	4	4.5	5	1250	1170	1230	1180	1290	1225
6	8000	4.7	4	4.5	5	1270	1200	1240	1190	1230	1291
7	5000	5.2	4	4.5	5	1410	1320	1380	1310	1360	1356
8	8000	5.2	4	4.5	5	1390	1380	1320	1300	1390	1267
9	5000	4.7	2.5	6.75	5	1200	1170	1130	1200	1190	1164
10	8000	4.7	2.5	6.75	5	1130	1150	1210	1140	1120	1267
11	5000	5.2	2.5	6.75	5	1400	1420	1370	1350	1380	1391
12	8000	5.2	2.5	6.75	5	1390	1360	1410	1450	1380	1300
13	<mark>5000</mark>	4.7	4	<mark>6</mark> .75	5	1210	1220	1210	1190	1180	1203
14	8000	4.7	4	<mark>6</mark> .75	5	1230	1220	1190	1220	1160	1288
15	5000	5.2	4	6.75	5	1390	1400	1370	1340	1360	1377
16	8000	5.2	4	6. 7 5	5	1360	1340	1370	1390	1450	1271
17	5000	4.7	2.5	4.5	15	1200	1140	1120	1190	1150	1157
18	8000	4.7	2.5	4.5	15	1190	1190	1130	1160	1100	1271
19	5000	5.2	2.5	4.5	15	1380	1380	1420	1410	1350	1382
20	8000	5.2	2.5	4.5	15	1380	1430	1350	1330	1390	1289
21	5000	4.7	4	4.5	15	1240	1210	1200	1170	1190	1203
22	8000	4.7	4	4.5	15	1210	1220	1220	1190	1180	1290
23	5000	5.2	4	4.5	15	1410	1370	1390	1370	1340	1374
24	8000	5.2	4	4.5	15	1390	1330	1330	1430	1380	1278
25	5000	4.7	2.5	6.75	15	1160	1190	1180	1160	1230	1175
26	8000	4.7	2.5	6.75	15	1190	1210	1130	1130	1170	1276
27	5000	5.2	2.5	6.75	15	1390	1420	1410	1330	1380	1386
28	8000	5.2	2.5	6.75	15	1360	1430	1390	1410	1340	1292
29	5000	4.7	4	6.75	15	1240	1190	1150	1210	1200	1199

ſ							She	ar Str	ength	(N/m	im²)	
	ลำดับ	Α	в	С	D	E	1	2	3	4	5	Аро
	30	8000	4.7	4	6.75	15	1160	1210	1190	1240	1200	1290
ſ	31	5000	5.2	4	6.75	15	1390	1360	1370	1420	1360	1381
	32	8000	5.2	4	6.75	15	1410	1360	1420	1330	1390	1382

Table 3: Experiment Patterns and **Results** (continued)

Table 4: Results of the Coefficient Analysis

Term	Effect	Coef	SE Coef	т	Р
Constant		1283.75	2.735	469.31	0.000
А	-1.5	0.75	2.735	-0.27	0.784
В	196.00	98.0	2.735	35.83	0.000
С	12.00	6.00	2.735	2.19	0.030
D	1.50	0.75	2.735	0.27	0.784
E	-3.25	-1.62	2.735	-0.59	0.554
AB	4.0	2.00	2.735	0.73	0.466
AC	3.50	1.75	2.735	0.64	0.523
AD	-0.50	-0.25	2.735	-0.09	0.927
AE	-2.75	-1.38	2.735	-0.50	0.616
BC	-31.5	-15.75	2.735	-5.67	0.000
BD	2.5	1.25	2.735	0.46	0.648
BE	1.25	0.63	2.735	0.23	0.820
CD	-1.0	-0.50	2.735	-0.18	0.855
CE	2.25	1.12	2.735	0.41	0.682
DE	4.75	2.38	2.735	0.87	0.387
ABC	-4.00	-2.00	2 .735	0.73	0.466
ABD	4.50	2.25	2.735	0.82	0.412
ABE	-3.25	-1. <mark>63</mark>	2.735	-0.59	0.544
ACD	2.50	1.25	2.735	0.46	0.648
ACE	1.25	0.63	2.735	0.23	0.820
ADE	1.25	0.63	2.735	0.23	0.8200
BCD	11.00	5.50	2.735	2.01	0.046
BCE	10.75	<mark>5.3</mark> 7	2.7 <mark>35</mark>	1.96	0.052
BDE	-3.25	- <mark>1.6</mark> 3	2.735	-0.59	0.544
CDE	-3.75	-1.88	2.735	-0.69	0.494
ABCD	-2.50	-1.25	2.735	0.46	0.648
ABCE	1.75	0.88	2.735	0.32	0.750
ABDE	-0.75	-0.37	2.735	-0.14	0.891
ACDE	-1.75	-0.88	2.735	-0.32	0.750
BCDE	-4.75	-2.37	2.735	-0.87	0.387
ABCDE	0.25	0.12	2.735	0.05	0.964

From Table 4: The P-value was compared with Alpha, by which the Pvalue of each factor had to be less than 0.05, then they would be the main factors that affected the shear resistance of the rivets to a significant degree. These factors were: the sizes of the holes (B), the thickness of the workpieces, (C),

the correction among the sizes of the holes (B), the thickness of the workpieces (C), the co-reaction among the sizes of the holes (B), the thickness of the workpieces (C) and the length of the rivets (D).

3.2 Analysis of the Most Appropriate Values of the Factors

After the screening, an experiment was carried out to screen and determine those factors affecting the number of metal beads and the shear resistance of the welding line obtained. The experiment was designed by using Response Surface Methodology based on a Box-Behnken Design, in order to determine the best result, as shown in Table

Table	5:	Factors	and	Symbols	used	in	the
	Bo	ox- Behn	ken]	Design			

129		levels		
Factor/Unit	low	medium	high	Symbols
1 Thickness (m.m.)	2.50	3.20	4.00	С
2. Size of Hole (m.m.)	4.70	4.90	5.20	В
3. Rivet Long (m.m.)	4.50	5.60	6.70	D

From Table 5. After welding the 30 tested workpieces based on the Box-Behnken design with two replications, the workpieces were then tested using the pulling method, in n order to determine the shear resistance of the rivets. The results are shown in Table 6. The obtained data was used for a response surface analysis.

 Table 6: Experimental Pattern

Std	Run	с	в	D	Shear
Order	Order	_	_	_	e.i.eu.
1	12/20	2.50	4.70	5.60	1180
2	30/22	4.00	4.70	5.60	1290
3	15/16	2.50	5.20	5.60	1380
4	11/25	4.00	5.20	5.60	1390
5	28/26	2.50	4.90	4.50	1210
6	13/29	4.00	4.90	4.50	1240
7	7/17	2.50	4.90	6.70	1340
8	10/3	4.00	4.90	6.70	1320
9	18/4	3.20	4.70	4.50	1190

Table 6: Experimental Pattern (continued)

Std Order	Run Order	с	в	D	Shear
10	21/1	3.20	5.20	4.50	1400
11	9/5	3.20	4.70	6.70	1210
12	19/6	3.20	5.20	6.70	1390
13	8/24	3.20	4.90	5.60	1310
14	27/2	3.20	4.90	5.60	1320
15	23/14	3.20	4.90	5.60	1320
16	12/20	2.50	4.70	5.60	1170
17	30/22	4.00	4.70	5.60	1280
18	15/16	2.50	5.20	5.60	1370
19	11/25	4.00	5.20	5.60	1380
20	28/26	2.50	4.90	4.50	1200
21	13/29	4.00	4.90	4.50	1230
22	7/17	2.50	4.90	6.70	1350
23	10/3	4.00	4.90	6.70	1320
24	18/4	3.20	4.70	4.50	1190
25	21/1	3.20	5.20	4.50	1400
26	9/5	3.20	4.70	6.70	1200
27	19/6	3.20	5.20	6.70	1390
28	8/24	3.20	4.90	5.60	1320
29	27/2	3.20	4.90	5.60	1320
30	23/14	3.20	4.90	5.60	1320

Table 7: Shear Resistance of AluminumRivets using Response SurfaceAnalysis

Term	Coef	Se Coef	T	Р
Constant	1318.33	12.29	107.208	0.000
С	15.62	7.530	2.075	0.051
В	86.88	7.530	11.537	0.000
D	28.75	7.530	3.818	0.001
CC	-16.67	11.084	<mark>-1.504</mark>	0.148
BB	3.33	11.084	0.301	0.767
DD	-25.42	11.084	-2.293	0.033
СВ	-25.00	10.649	-2.348	0.029
CD	-13.75	10.649	-1.291	0.211
BD	-6.25	10.649	-0.587	0.564

S = 30.1213 R-Sq = 89.30% R-Sq(adj) = 84.48%

A shear resistance projection equation was then carried out by using the coefficients of the variables in order to determine the most appropriate value of each variable. The equation used was as follows: Maximize = 1318.33+15.62(C)+86.88+(B)+28.75(D -16.67(C)² +3.33(B)² -25.42(D)² - 25.0 (CB)-13.75(CD)-6.25(BD)

3.3 Determination of the Most Appropriate Value of the Variables Affecting the Shear Resistance of the Rivets

The analysis of the data using the Response Optimizer Function resulted in the most appropriate values for the factors affecting shear resistance, as shown in Table 8.

Table 8: The Most Appropriate Values of
the Factors

Response	Optimizatio	on						
Parameters								
Goal	Lower	Target	Upper	Weight	Import			
Maximum	1170N	1400N	1400N	I 1	1			
Global Solu	tion							
C = 2.84	85							
B = 5.2								
D = 6.25	5							
Predicted R	Predicted Responses							
Shear = 1417.55, desirability = 1.0000								
Composite I	Desirability	= 1.0000						
DV-	A 12	UUU						

3.4 Experiment using the Most Appropriate Values of the Factors; To Confirm the Results

An experiment to confirm the results was conducted on the most appropriate values of the factors that affect the shear resistance of the rivets, performing five replications so as to enhance confidence. The results are shown in Table 9.

Std	Response (y)						
Order	В	D	Е	Shear			
1	2.8	5.2	6.3	1400			
2	2.8	5.2	6.3	1420			
3	2.8	5.2	6.3	1420			
4	2.8	5.2	6.3	1410			
5	2.8	5.2	6.3	1430			

Table 9: The Results of the Responses

4. Conclusion

The experiment to confirm the results found that the adjustment level of the factors obtained form the workpiece pulling experiment showed that the shear resistance was at an average of 1,416 Newton. a comparison of the experiment results with the actual values showed similar values. It can thus be concluded that the results obtained from the experiment are actually the most appropriate values for setting the variables used in the riveting process. In addition, this experiment was carried out in line with the objectives, in that an aluminum rivet of Ø4.7 mm, was found to have a shear resistance at 1,113 Newton. When fastened with a hole of Ø5.2 mm. and pressed with 5,000 Newton tension, its body increased to Ø5.2 mm. which was bigger than the original size by 0.7 mm. yet the structure remained unchanged. Moreover, the body of the rivet was also strengthened and was able to resist a shear of 1,416 Newton, an increase of 303 Newton, thus enhancing its shear resistance.

5. References

- [1] C.P. Fung, and J.Smart., "An experimental numerical analysis of rivet single lap joints". Proceedings of the Institution of Mechanical Engineers, Part G, Journal of Aerospace Engineering Vol 208,1994.
- [2] Gao Husheng, Gu Haicheng, and Zhou Huijiu., "Effect of slip amplitude on fretting fatigue". Wear, Vol 148, 1991.
- [3] John C.Ekvall., "Fatigue of Riveted Metallic Joint." Fatgue in Mechanically Fastened Composite and Metallic Joint, ASTM STP 927, American Sociaty for Testing and Materials, Philadephia, 1986.
- [4] J.Y Mann, R.A. Pell, R.Jones, and M.Heller., "Reducing the effects of rivet holes on fatigue Life by adhes bonding" Theoretical and Applied Fracture Mechanics, Vol.3, no.2, 1985.
- [5] K.N. Shivakumar, and J.C Newman Jr., "Stress concentration equations for straight shank And countersunk hole in plates". Journal of Applie Mechanics, Vol 62, 1995.
- [6] John E. Bringas. Handbook of Comparative World Steel Standards. Second edition. ASTM international,1999.
- [7] Larry Jeffus. Welding Principles and Applications. Third Edition. Albany : Delmar Publishers Inc, 1993.
- [8] Myers, Raymond H. and Montgomery, Douglas C. "Response Surface Methodology. Process and Product Optimization Using Designed Experiments". New York : John Wiley & Sons Inc, 1995.