Show simple item record

dc.contributor.authorChanklan, Ratipornen_US
dc.contributor.authorChaiyakhan, Kedkarnen_US
dc.contributor.authorkerdprasop, Kittisaken_US
dc.contributor.authorKerdprasop, Nittayaen_US
dc.date.accessioned2018-07-04T04:47:11Z
dc.date.available2018-07-04T04:47:11Z
dc.date.issued2018-07-04
dc.identifier.issn1906-0432
dc.identifier.urihttp://repository.rmutp.ac.th/handle/123456789/2439
dc.descriptionวารสารวิชาการและวิจัย มทร.พระนคร, 11 (2) : 37-47en_US
dc.description.abstractIn this paper proposed remote sensing using Normalized Difference Vegetation Index from NOAA STAR, cluster value from k-means, temperature, rainfall, number of rainy days and runoff to create runoff prediction model using Artificial Neural Network (ANN) and evaluated runoff models with the R2 and RMSE. The results show that the using of cluster value with other parameters to create predictive models can enhance forecasting results. When using Normalized Difference Vegetation Index with temperature value at lag time 1-2 month and cluster value at lag time 1 month to create model with ANN, we have got the best performance which are RMSE=0.09 and R2=0.743. The experimental results shows that remote sensing data and cluster value from k-means can be used to predictive the runoff effectively.en_US
dc.description.sponsorshipRajamangala University of Technology Phra Nakhonen_US
dc.language.isothen_US
dc.subjectRegression analysisen_US
dc.subjectการวิเคราะห์การถดถอยen_US
dc.subjectrunoffen_US
dc.subjectน้ำท่าen_US
dc.subjectwater contenten_US
dc.subjectปริมาณน้ำen_US
dc.titleDevelopment Model for Predict Runoff in Mun Basinen_US
dc.title.alternativeการพัฒนาแบบจำลองสำหรับคาดการณ์ปริมาณน้ำท่าบริเวณลุ่มน้ำมูลen_US
dc.typeJournal Articlesen_US
dc.contributor.emailauthorarc_angle@hotmail.comen_US
dc.contributor.emailauthorarit@rmutp.ac.then_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record