dc.contributor.author | Sangma, Watcharin | |
dc.contributor.author | Jiraprasertwong, Pichet | |
dc.contributor.author | Honwichit, Worapot | |
dc.date.accessioned | 2015-10-15T07:20:25Z | |
dc.date.available | 2015-10-15T07:20:25Z | |
dc.date.issued | 2015-10-15 | |
dc.identifier.uri | http://repository.rmutp.ac.th/handle/123456789/1898 | |
dc.description | รายงานวิจัย -- มหาวิทยาลัยเทคโนโลยีราชมงคลพระนคร, 2557 | en_US |
dc.description.abstract | This research proposes a Bayesian logistic regression model which is applied to the data from autoparts manufacturing machines. Factors related to defective and bad products are investigated. The proposed model is compared with the logistic regression using maximum likelihood method for parameter estimation. The data were collected from 132 machines in an autoparts manufacturing factory. The research found that useful life, machine type 6, worker group 3 and 4, working step 1
and 2 influence to the risk of producing defective and bad products. When the useful life is increased by 1 month the risk of producing defective and bad products will be increased by 2.2%. The risk that the machine type 6 will produce defective and bad products is 4.078 times greater than the risk that the machine type will do. The risk that the worker group 3 will produce defective and bad products is 61.7% less than the risk that the worker group 12 will do. The risk that the worker group 4 will produce defective and bad products is 61.5% less than the risk that the worker
group 12 will do. The risk that the working step 1 will produce defective and bad products is 2.831 times greater than the risk that the working step 4 will do. The risk that the working step 2 will produce defective and bad products is 13.8 % greater than the risk that the working step 4 will do. The parameter estimates from the Bayesian logistic regression are very close to the ones from the logistic regression using maximum likelihood method for parameter estimation | en_US |
dc.description.sponsorship | Rajamangala University of Technology Phra Nakhon | en_US |
dc.language.iso | th | en_US |
dc.subject | Logistics | en_US |
dc.subject | Automobiles -- Parts | en_US |
dc.subject | Machine parts -- Failures | en_US |
dc.subject | Machinery | en_US |
dc.subject | การบริหารงานโลจิสติกส์ | en_US |
dc.subject | รถยนต์ -- ชิ้นส่วน | en_US |
dc.subject | ชิ้นส่วนเครื่องจักรกล -- ความล้มเหลว | en_US |
dc.subject | เครื่องจักรกล | en_US |
dc.subject | Bayesian logistic regression | en_US |
dc.subject | Autoparts manufacturing factory | en_US |
dc.subject | Risk of producing defective and bad products | en_US |
dc.subject | logistic | en_US |
dc.subject | การถดถอยโลจิสติกส์แบบเบย์ | en_US |
dc.subject | โรงงานผลิตชิ้นส่วนรถยนต์ | en_US |
dc.subject | ความเสี่ยงที่จะผลิตสินค้าบกพร่องและเสีย | en_US |
dc.title | Cause analysis of defective and bad products using bayesian logistic regression model : case study of autoparts anufacturing factory | en_US |
dc.title.alternative | การวิเคราะห์สาเหตุของการผลิตสินค้าบกพร่องและเสียด้วยตัวแบบการถดถอยโลจิสติกส์แบบเบย์: กรณีศึกษาโรงงานผลิตชิ้นส่วนรถยนต์ | en_US |
dc.type | Research Report | en_US |
dc.contributor.emailauthor | watcharin.s@hotmail.co.th | en_US |
dc.contributor.emailauthor | arit@rmutp.ac.th | en_US |
dc.contributor.emailauthor | arit@rmutp.ac.th | en_US |