Show simple item record

dc.contributor.authorSangma, Watcharin
dc.contributor.authorJiraprasertwong, Pichet
dc.contributor.authorHonwichit, Worapot
dc.date.accessioned2015-10-15T07:20:25Z
dc.date.available2015-10-15T07:20:25Z
dc.date.issued2015-10-15
dc.identifier.urihttp://repository.rmutp.ac.th/handle/123456789/1898
dc.descriptionรายงานวิจัย -- มหาวิทยาลัยเทคโนโลยีราชมงคลพระนคร, 2557en_US
dc.description.abstractThis research proposes a Bayesian logistic regression model which is applied to the data from autoparts manufacturing machines. Factors related to defective and bad products are investigated. The proposed model is compared with the logistic regression using maximum likelihood method for parameter estimation. The data were collected from 132 machines in an autoparts manufacturing factory. The research found that useful life, machine type 6, worker group 3 and 4, working step 1 and 2 influence to the risk of producing defective and bad products. When the useful life is increased by 1 month the risk of producing defective and bad products will be increased by 2.2%. The risk that the machine type 6 will produce defective and bad products is 4.078 times greater than the risk that the machine type will do. The risk that the worker group 3 will produce defective and bad products is 61.7% less than the risk that the worker group 12 will do. The risk that the worker group 4 will produce defective and bad products is 61.5% less than the risk that the worker group 12 will do. The risk that the working step 1 will produce defective and bad products is 2.831 times greater than the risk that the working step 4 will do. The risk that the working step 2 will produce defective and bad products is 13.8 % greater than the risk that the working step 4 will do. The parameter estimates from the Bayesian logistic regression are very close to the ones from the logistic regression using maximum likelihood method for parameter estimationen_US
dc.description.sponsorshipRajamangala University of Technology Phra Nakhonen_US
dc.language.isothen_US
dc.subjectLogisticsen_US
dc.subjectAutomobiles -- Partsen_US
dc.subjectMachine parts -- Failuresen_US
dc.subjectMachineryen_US
dc.subjectการบริหารงานโลจิสติกส์en_US
dc.subjectรถยนต์ -- ชิ้นส่วนen_US
dc.subjectชิ้นส่วนเครื่องจักรกล -- ความล้มเหลวen_US
dc.subjectเครื่องจักรกลen_US
dc.subjectBayesian logistic regressionen_US
dc.subjectAutoparts manufacturing factoryen_US
dc.subjectRisk of producing defective and bad productsen_US
dc.subjectlogisticen_US
dc.subjectการถดถอยโลจิสติกส์แบบเบย์en_US
dc.subjectโรงงานผลิตชิ้นส่วนรถยนต์en_US
dc.subjectความเสี่ยงที่จะผลิตสินค้าบกพร่องและเสียen_US
dc.titleCause analysis of defective and bad products using bayesian logistic regression model : case study of autoparts anufacturing factoryen_US
dc.title.alternativeการวิเคราะห์สาเหตุของการผลิตสินค้าบกพร่องและเสียด้วยตัวแบบการถดถอยโลจิสติกส์แบบเบย์: กรณีศึกษาโรงงานผลิตชิ้นส่วนรถยนต์en_US
dc.typeResearch Reporten_US
dc.contributor.emailauthorwatcharin.s@hotmail.co.then_US
dc.contributor.emailauthorarit@rmutp.ac.then_US
dc.contributor.emailauthorarit@rmutp.ac.then_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record