Show simple item record

dc.contributor.authorJiraprasertwong, Picheten_US
dc.contributor.authorพิเชฐ จิรประเสริฐวงศ์en_US
dc.contributor.authorTongkhow, Pitsanuen_US
dc.contributor.authorพิษณุ ทองขาวen_US
dc.contributor.authorThangchitpianpol, Piromen_US
dc.contributor.authorภิรมย์ ตั้งจิตเพียรผลen_US
dc.date.accessioned2016-09-28T09:22:40Z
dc.date.available2016-09-28T09:22:40Z
dc.date.issued2016-09-28
dc.identifier.urihttp://repository.rmutp.ac.th/handle/123456789/2077
dc.descriptionรายงานวิจัย -- มหาวิทยาลัยเทคโนโลยีราชมงคลพระนคร, 2558en_US
dc.description.abstractThe objectives of this research are to propose a Bayesian model for spatial time series analysis, to apply the proposed model to forecast a monthly rubber yield in Southern provinces of Thailand, and to compare the performance of the proposed model with the classical Holt-Winters Additive Exponential smoothing. The proposed model is a linear mixed model (LMM) with spatial effects which follow a conditional autoregressive model (CAR). Dummy variables are used for seasonal effects. A Bayesian method is used for parameter estimation. The estimated monthly yields are used for the monthly rubber yield forecasting. The dependent variables are the rubber yield in each month of each province. The data are secondary data at a provincial level. The factors considered are spatial effects, heterogeneity effects, and seasonal effects. The results show that the factors influencing on the amount of rubber yields are, spatial, heterogeneity, and seasonal effects. The proposed model is proper and forecast accurately. Using the mean absolute error (MAE), the proposed model has a better performance compared to the classical Holt-Winters Additive Exponential smoothing in both model fitting and model validating. The proposed model should be the first consideration for spatial time series forecasting.en_US
dc.description.sponsorshipRajamangala University of Technology Phra Nakhonen_US
dc.language.isothen_US
dc.subjectTime series Analysisen_US
dc.subjectการวิเคราะห์อนุกรมเวลาen_US
dc.subjectStatisticsen_US
dc.subjectสถิติen_US
dc.subjectRubber yield forecastingen_US
dc.subjectการพยากรณ์ผลผลิตยางพาราen_US
dc.subjectRubber yields in southern provinces of Thailanden_US
dc.subjectผลผลิตยางพาราในภาคใต้ของประเทศไทยen_US
dc.subjectSpatial time series dataen_US
dc.subjectข้อมูลอนุกรมเชิงพื้นที่en_US
dc.subjectSeasonal effectsen_US
dc.subjectอิทธิพลของฤดูกาลen_US
dc.titleBayesian models for spatial time series Data applied to rubber yields in southern provinces of Thailanden_US
dc.title.alternativeตัวแบบเบย์สำหรับข้อมูลอนุกรมเวลาเชิงพื้นที่ ประยุกต์ใช้กับผลผลิตยางพารา ในจังหวัดภาคใต้ของประเทศไทยen_US
dc.typeResearch Reporten_US
dc.contributor.emailauthorarit@rmutp.ac.then_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record